
Introduction to Android and Bring Up

Introduction to
Android and Bring
Up
Maxime Ripard
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 1/255

Maxime Ripard

I Embedded Linux engineer and trainer at Free Electrons since
2011

I Embedded Linux development: kernel and driver development,
system integration, boot time and power consumption
optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://www.free-electrons.com

I Contributor to various open-source projects: Barebox, Linux,
Buildroot

I Living in Toulouse, south west of France

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 2/255

http://www.free-electrons.com

Free Electrons

I Free Electrons, specialized in Embedded Linux, since 2005

I Strong emphasis on community relation
I Training

I Embedded Linux system development
I Linux kernel and device driver development
I Upcoming public sessions in Avignon, Lyon and Toulouse, or

sessions at customer location
I All training materials freely available under a Creative

Commons license.

I Development and consulting
I Board Support Package development or improvement
I Kernel and driver development
I Embedded Linux system integration
I Power-management, boot-time, performance audits and

improvement
I Embedded Linux application development

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 3/255

Free Electrons customers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 4/255

Free Electrons training

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 5/255

Introduction to Android

Introduction to
Android
Maxime Ripard
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 6/255

Introduction to Android

Features

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 7/255

Features

I All you can expect from a modern mobile OS:
I Application ecosystem, allowing to easily add and remove

applications and publish new features across the entire system
I Support for all the web technologies, with a browser built on

top of the well-established WebKit rendering engine
I Support for hardware accelerated graphics through OpenGL ES
I Support for all the common wireless mechanisms: GSM,

CDMA, UMTS, LTE, Bluetooth, WiFi.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 8/255

Introduction to Android

History

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 9/255

Early Years

I Began as a start-up in Palo Alto, CA, USA in 2003
I Focused from the start on software for mobile devices
I Very secretive at the time, even though founders achieved a

lot in the targeted area before founding it
I Finally bought by Google in 2005
I Andy Rubin, founder of Android, Inc was also CEO of Danger,

Inc, a company producing one of the early smartphones, the
Sidekick

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10/255

Opening Up

I Google announced the Open Handset Alliance in 2007, a
consortium of major actors in the mobile area built around
Android

I Hardware vendors: Intel, Texas Instruments, Qualcomm,
Nvidia, etc.

I Software companies: Google, eBay, etc.
I Hardware manufacturers: Motorola, HTC, Sony Ericsson,

Samsung, etc.
I Mobile operators: T-Mobile, Telefonica, Vodafone, etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 11/255

Android Open Source Project (AOSP)

I At every new version, Google releases its source code through
this project so that community and vendors can work with it.

I One major exception: Honeycomb has not been released
because Google stated that its source code was not clean
enough to release it.

I One can fetch the source code and contribute to it, even
though the development process is very locked by Google

I Only a few devices are supported through AOSP though, only
the two most recent Android development phones, the Panda
board and the Motorola Xoom.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 12/255

Android Releases

I Each new version is given a dessert name

I Released in alphabetical order
I Last releases:

I Android 3.X Honeycomb
I Android 4.0 Ice Cream Sandwich
I Android 4.1/4.2 Jelly Bean

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 13/255

Android Versions

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 14/255

Introduction to Android

Architecture

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 15/255

Architecture

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 16/255

The Linux Kernel

I Used as the foundation of the Android system

I Numerous additions from the stock Linux, including new IPC
(Inter-Process Communication) mechanisms, alternative
power management mechanism, new drivers and various
additions across the kernel

I These changes are beginning to go into the staging/ area of
the kernel, as of 3.3, after being a complete fork for a long
time

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 17/255

Android Libraries

I Gather a lot of Android-specific libraries to interact at a
low-level with the system, but third-parties libraries as well

I Bionic is the C library, SurfaceManager is used for drawing
surfaces on the screen, etc.

I But also WebKit, SQLite, OpenSSL coming from the free
software world

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 18/255

Android Runtime

Handles the execution of Android applications

I Almost entirely written from scratch by Google

I Contains Dalvik, the virtual machine that executes every
application that you run on Android, and the core library for
the Java runtime, coming from Apache Harmony project

I Also contains system daemons, init executable, basic binaries,
etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 19/255

Android Framework

I Provides an API for developers to create applications

I Exposes all the needed subsystems by providing an abstraction

I Allows to easily use databases, create services, expose data to
other applications, receive system events, etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 20/255

Android Applications

I AOSP also comes with a set of applications such as the phone
application, a browser, a contact management application, an
email client, etc.

I However, the Google apps and the Android Market app aren’t
free software, so they are not available in AOSP. To obtain
them, you must contact Google and pass a compatibility test.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 21/255

Introduction to Android

Hardware Requirements for Linux

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22/255

Processor architecture

I The Linux kernel and most other architecture-dependent
component support a wide range of 32 and 64 bits
architectures

I x86 and x86 64, as found on PC platforms, but also embedded
systems (multimedia, industrial)

I ARM, with hundreds of different SoC (multimedia, industrial)
I PowerPC (mainly real-time, industrial applications)
I MIPS (mainly networking applications)
I SuperH (mainly set top box and multimedia applications)
I Blackfin (DSP architecture)
I Microblaze (soft-core for Xilinx FPGA)
I Coldfire, SCore, Tile, Xtensa, Cris, FRV, AVR32, M32R

I Both MMU and no-MMU architectures are supported,
even though no-MMU architectures have a few limitations.

I Linux is not designed for small microcontrollers.

I Besides the toolchain, the bootloader and the kernel, all other
components are generally architecture-independent

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 23/255

RAM and storage

I RAM: a very basic Linux system can work within 8 MB of
RAM, but a more realistic system will usually require at least
32 MB of RAM. Depends on the type and size of applications.

I Storage: a very basic Linux system can work within 4 MB of
storage, but usually more is needed.

I flash storage is supported, both NAND and NOR flash, with
specific filesystems

I Block storage including SD/MMC cards and eMMC is
supported

I Not necessarily interesting to be too restrictive on the amount
of RAM/storage: having flexibility at this level allows to
re-use as many existing components as possible.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 24/255

Communication

I The Linux kernel has support for many common
communication buses

I I2C
I SPI
I CAN
I 1-wire
I SDIO
I USB

I And also extensive networking support
I Ethernet, WiFi, Bluetooth, CAN, etc.
I IPv4, IPv6, TCP, UDP, SCTP, DCCP, etc.
I Firewalling, advanced routing, multicast

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 25/255

ARM and System-on-Chip

I ARM is one of the most popular architectures used in
embedded Linux systems

I ARM designs CPU cores (instruction sets, caches, MMU,
etc.) and sells the design to licensees

I The licensees are founders (Texas Instruments, Freescale, ST
Ericsson, Atmel, etc.), they integrate an ARM core with many
peripherals, into a chip called a SoC, for System-on-chip

I Each founder provides different models of SoC, with different
combination of peripherals, power, power consumption, etc.

I The concept of SoC allows to reduce the number of
peripherals needed on the board, and therefore the cost of
designing and building the board.

I Linux supports SoCs from most vendors, but not all, and
not with the same level of functionality.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 26/255

ARM and System-on-Chip

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 27/255

Atmel AT91SAM9263

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 28/255

Texas Instruments OMAP3430

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 29/255

Type of hardware platforms

I Evaluation platforms from the SoC vendor. Usually
expensive, but many peripherals are built-in. Generally
unsuitable for real products.

I Component on Module, a small board with only
CPU/RAM/flash and a few other core components, with
connectors to access all other peripherals. Can be used to
build end products for small to medium quantities.

I Community development platforms, a new trend to make a
particular SoC popular and easily available. Those are
ready-to-use and low cost, but usually have less peripherals
than evaluation platforms. To some extent, can also be used
for real products.

I Custom platform. Schematics for evaluation boards or
development platforms are more and more commonly freely
available, making it easier to develop custom platforms.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 30/255

Gumstix

I TI OMAP3530 (600 MHz, ARM
Cortex-A8, PowerVR SGX, DSP)

I Component on Module

I 256 MB RAM

I 256 MB NAND (optional)

I Bluetooth, WiFi (optional)

I uSD

I $115-229

I Development boards available at $
49-229, with many peripherals: LCD,
Ethernet, UART, SPI, I2C, etc.

I http://www.gumstix.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 31/255

http://www.gumstix.com

Pandaboard ES

I TI OMAP 4460
(Dual-Core 1.2 GHz,
cortex A9, PowerVR
GPU, DSP)

I Community development
platform

I 1 GiB RAM

I SD slot, Ethernet, WiFi,
Bluetooth, USB OTG

I HDMI, S-Video, Camera,
audio

I $ 149

I http://pandaboard.org

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 32/255

http://pandaboard.org

Snowball

I ST Ericsson AP9500 (dual
cortex A9, MALI GPU)

I Community development
platform

I 1 GB RAM

I 4-8 GB eMMC, microSD

I HDMI, S-Video, audio

I WiFi, Bluetooth, Ethernet

I Accelerometer, Magnetometer,
Gyrometer, GPS

I Expansion: USB, I2C, SPI,
LCD, UART, GPIO, etc.

I 169 e to 244 e

I http://igloocommunity.org
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 33/255

http://igloocommunity.org

Freescale Quick Start

I Freescale I.MX53 (1 GHz
Cortex A8)

I Community development
platform

I 1 GB RAM

I 4-8 GB eMMC, microSD

I LVDS, LCD, VGA, HDMI,
audio

I Accelerometer, SD/MMC,
microSD, SATA, Ethernet,
USB

I Expansion: I2C, SPI, SSI, LCD,
Camera

I 149 e

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 34/255

Criteria for choosing the hardware

I Make sure the hardware you plan to use is already supported
by the Linux kernel, and has an open-source bootloader,
especially the SoC you’re targeting.

I Having support in the official versions of the projects (kernel,
bootloader) is a lot better: quality is better, and new
versions are available.

I Some SoC vendors and/or board vendors do not contribute
their changes back to the Linux kernel. Ask them to do so, or
use another product if you can. A good measurement is to see
the delta between their kernel and the official one.

I Between properly supported hardware in the official Linux
kernel and poorly-supported hardware, there will be huge
differences in development time and cost.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 35/255

Introduction to Android

Embedded Systems using Linux

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 36/255

Consumer device: Internet box

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 37/255

Consumer device: Television

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 38/255

Professional device: point of sale terminal

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 39/255

Industrial system: laser cutter

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 40/255

Industrial system: wind turbine

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 41/255

Industrial system: cow milking

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 42/255

Industrial system: sea pollution detection system

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 43/255

Industrial system: viticulture machine

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 44/255

Critical Systems: Nuclear Reactor

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 45/255

Critical Systems: Rockets

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 46/255

Introduction to Android

Hardware Requirements for Android

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 47/255

SoC requirements

I Since Android in itself is quite huge, the hardware required is
quite different.

I First, the only architecture officially supported by Google is
ARMv7 (basically, all the SoCs based on the Cortex-A). The
CPU has to be powerful enough as well (the typical setup on
recent releases is a dual-core CPUs running at more than
1GHz

I Other architectures like x86 and MIPS are supported by
third-party ports

I You also need to have a powerful enough GPU with OpenGL
ES support. Latest versions of Android require the 3D
hardware acceleration

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 48/255

Storage and RAM needed

I The required RAM size is also quite huge, 340MB are required
for the kernel and userspace memory

I Required storage is quite huge as well. An image of the
system is around 200-300MB, and you must have 350MB of
data space for the user plus 1GB of shared storage for the
applications. Google recommends to use block devices for
storage and not flash devices.

I The shared space has to be accessible from a host computer
by some way, like NFS, USB Mass Storage, MTP, etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 49/255

External Peripherals 1/2

I No form of communication supported is mandatory, but you
need at least one form of data networking with a throughput
of at least 200 kbit per second.

I You will also need obviously a rather large screen with a
pointer device, presumably a touchscreen.

I Screens supported must have a screen size of at least 2.5
inches, with a minimal resolution of 426x320, with a ratio
between 4:3 and 16:9 and with a color depth of at least 16bits.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 50/255

External Peripherals 2/2

I Sensors are not mandatory, but depending of the class of
sensors, they are:

I Recommended
I Accelerometer
I Magnetometer
I GPS
I Gyroscope

I Optional
I Barometer
I Photometer
I Proximity Sensor

I Deprecated
I Thermometer (and only to measure CPU temperature)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 51/255

Unusual Android Devices: Nook E-Book Reader

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 52/255

Unusual Android Devices: Watch

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 53/255

Unusual Android Devices: Portable Console

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 54/255

Unusual Android Devices: Microwave Oven

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 55/255

Unusual Android Devices: Treadmill

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 56/255

When to choose Android

I All of the requirements listed above are only if you want to be
eligible to the Android Play Store

I If you don’t want to get the store, you can obviously ignore
these

I However, Android really makes sense in a system that has at
least:

I A large screen
I A powerful SoC, with plenty of RAM, storage space (around

512MB) and a decent GPU

I This is not an advisable choice when you want to build a
headless system, or a cheap system with limited resources

I In this case, a regular Linux system is definitely more
appropriate. It will save you engineering costs, reduce the
price of your hardware, and bring the same set of features you
could expect from a headless Android

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 57/255

Android Source Code and Compilation

Android Source
Code and
Compilation
Maxime Ripard
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 58/255

Android Source Code and Compilation

How to get the source code

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 59/255

Source Code Location

I The AOSP project is available at
http://source.android.com

I On this site, along with the code, you will find some resources
such as technical details, how to setup a machine to build
Android, etc.

I The source code is split into several Git repositories for
version control. But as there is a lot of source code, a single
Git repository would have been really slow

I Google split the source code into a one Git repository per
component

I You can easily browse these git repositories using
https://code.google.com/p/android-source-

browsing/source/browse/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 60/255

http://source.android.com
https://code.google.com/p/android-source-browsing/source/browse/
https://code.google.com/p/android-source-browsing/source/browse/

Repo

I This makes hundreds of Git repositories

I To avoid making it too painful, Google also created a tool:
repo

I Repo aggregates these Git repositories into a single folder
from a manifest file describing how to find these and how to
put them together

I Also aggregates some common Git commands such as diff or
status that are run across all the Git repositories

I You can also execute a shell command in each repository
managed by Repo using the repo forall command

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 61/255

Source code licenses

I Mostly two kind of licenses:
I GPL/LGPL Code: Linux, D-Bus, BlueZ
I Apache/BSD: All the rest
I In the external folder, it depends on the component, but

mostly GPL

I While you might expect Google’s apps for Android, like the
Android Market (now called Google Play Store), to be in the
AOSP as well, these are actually proprietary and you need to
be approved by Google to get them.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 62/255

Android Source Code and Compilation

Compilation

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 63/255

Android Compilation Process

I Android’s build system relies on the well-tried GNU/Make
software

I Android is using a “product” notion which corresponds to the
specifications of a shipping product, i.e. crespo for the Google
Nexus S vs crespo4g for the Sprint’s Nexus S with LTE
support

I To start using the build system, you need to include the file
build/envsetup.sh that defines some useful macros for
Android development or sets the PATH variable to include the
Android-specific commands

I source build/envsetup.sh

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 64/255

Prepare the process

I Now, we can get a list of all the products available and select
them with to the lunch command

I lunch will also ask for a build variant, to choose between
eng, user and userdebug, which corresponds to which kind
of build we want, and which packages it will add

I You can also select variants by passing directly the combo
product-variant as argument to lunch

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 65/255

Compilation

I You can now start the compilation just by running make

I This will run a full build for the current selected product

I There are lots of other build commands:

make <package> Builds only the package, instead of going
through the entire build

make clean Cleans all the files generated by previous
compilations

make clean-<package> Removes all the files generated by
the compilation of the given package

mm Builds all the modules in the current directory
mmm <directory> builds all the modules in the given

directory

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 66/255

Android Source Code and Compilation

Contribute

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 67/255

Gerrit

I Google also developed for the Android development process a
tool to manage projects and ease code reviews.

I It once again uses Git to do so and Repo is also built around
it so that you can easily contribute to Android

I To do so, start a new branch with
repo start <branchname>

I Do your usual commits with Git

I When you are done, upload to Gerrit using repo upload

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 68/255

Linux kernel introduction

Linux kernel
introduction
Maxime Ripard
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 69/255

Linux kernel in the system

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 70/255

History

I The Linux kernel is one component of a system, which also
requires libraries and applications to provide features to end
users.

I The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.

I Linux quickly started to be used as the kernel for free software
operating systems

I Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

I Nowadays, hundreds of people contribute to each kernel
release, individuals or companies big and small.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 71/255

Linux license

I The whole Linux sources are Free Software released under the
GNU General Public License version 2 (GPL v2).

I For the Linux kernel, this basically implies that:
I When you receive or buy a device with Linux on it, you should

receive the Linux sources, with the right to study, modify and
redistribute them.

I When you produce Linux based devices, you must release the
sources to the recipient, with the same rights, with no
restriction..

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 72/255

Linux kernel key features

I Portability and hardware
support. Runs on most
architectures.

I Scalability. Can run on
super computers as well as
on tiny devices (4 MB of
RAM is enough).

I Compliance to standards
and interoperability.

I Exhaustive networking
support.

I Security. It can’t hide its
flaws. Its code is reviewed
by many experts.

I Stability and reliability.

I Modularity. Can include
only what a system needs
even at run time.

I Easy to program. You can
learn from existing code.
Many useful resources on
the net.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 73/255

Supported hardware architectures

I See the arch/ directory in the kernel sources

I Minimum: 32 bit processors, with or without MMU, and gcc

support

I 32 bit architectures (arch/ subdirectories)
Examples: arm, avr32, blackfin, m68k, microblaze,

mips, score, sparc, um

I 64 bit architectures:
Examples: alpha, arm64, ia64, sparc64, tile

I 32/64 bit architectures
Examples: powerpc, x86, sh

I Find details in kernel sources: arch/<arch>/Kconfig,
arch/<arch>/README, or Documentation/<arch>/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 74/255

System calls

I The main interface between the kernel and userspace is the
set of system calls

I About 300 system calls that provide the main kernel services
I File and device operations, networking operations,

inter-process communication, process management, memory
mapping, timers, threads, synchronization primitives, etc.

I This interface is stable over time: only new system calls can
be added by the kernel developers

I This system call interface is wrapped by the C library, and
userspace applications usually never make a system call
directly but rather use the corresponding C library function

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 75/255

Virtual filesystems

I Linux makes system and kernel information available in
user-space through virtual filesystems.

I Virtual filesystems allow applications to see directories and
files that do not exist on any real storage: they are created on
the fly by the kernel

I The two most important virtual filesystems are
I proc, usually mounted on /proc:

Operating system related information (processes, memory
management parameters...)

I sysfs, usually mounted on /sys:
Representation of the system as a set of devices and buses.
Information about these devices.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 76/255

The Android Kernel

Changes
introduced in the
Android Kernel
Maxime Ripard
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 77/255

The Android Kernel

Wakelocks

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 78/255

Power management basics

I Every CPU has a few states of power consumption, from
being almost completely off, to working at full capacity.

I These different states are used by the Linux kernel to save
power when the system is run

I For example, when the lid is closed on a laptop, it goes into
“suspend”, which is the most power conservative mode of a
device, where almost nothing but the RAM is kept awake

I While this is a good strategy for a laptop, it is not necessarily
good for mobile devices

I For example, you don’t want your music to be turned off
when the screen is

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 79/255

Wakelocks

I Android’s answer to these power management constraints is
wakelocks

I One of the most famous Android changes, because of the
flame wars it spawned

I The main idea is instead of letting the user decide when the
devices need to go to sleep, the kernel is set to suspend as
soon and as often as possible.

I In the same time, Android allows applications and kernel
drivers to voluntarily prevent the system from going to
suspend, keeping it awake (thus the name wakelock)

I This implies to write the applications and drivers to use the
wakelock API.

I Applications do so through the abstraction provided by the API
I Drivers must do it themselves, which prevents to directly

submit them to the vanilla kernel

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 80/255

Wakelocks API

I Kernel Space API
#include <linux/wakelock.h>

void wake_lock_init(struct wakelock *lock,

int type,

const char *name);

void wake_lock(struct wake_lock *lock);

void wake_unlock(struct wake_lock *lock);

void wake_lock_timeout(struct wake_lock *lock, long timeout);

void wake_lock_destroy(struct wake_lock *lock);

I User-Space API
$ echo foobar > /sys/power/wake_lock

$ echo foobar > /sys/power/wake_unlock

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 81/255

The Android Kernel

Binder

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 82/255

Binder

I RPC/IPC mechanism

I Takes its roots from BeOS and the OpenBinder project, which
some of the current Android engineers worked on

I Adds remote object invocation capabilities to the Linux Kernel

I One of the very basic functionalities of Android. Without it,
Android cannot work.

I Every call to the system servers go through Binder, just like
every communication between applications, and even
communication between the components of a single
application.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 83/255

Binder

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 84/255

The Android Kernel

klogger

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 85/255

Logging

I Logs are very important to debug a system, either live or after
a fault occurred

I In a regular Linux distribution, two components are involved
in the system’s logging:

I Linux’ internal mechanism, accessible with the dmesg

command and holding the output of all the calls to printk()

from various parts of the kernel.
I A syslog daemon, which handles the userspace logs and usually

stores them in the /var/log directory

I From Android developers’ point of view, this approach has
two flaws:

I As the calls to syslog() go through as socket, they generate
expensive task switches

I Every call writes to a file, which probably writes to a slow
storage device or to a storage device where writes are expensive

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 86/255

Logger

I Android addresses these issues with logger, which is a kernel
driver, that uses 4 circular buffers in the kernel memory area.

I The buffers are exposed in the /dev/log directory and you
can access them through the liblog library, which is in turn,
used by the Android system and applications to write to
logger, and by the logcat command to access them.

I This allows to have an extensive level of logging across the
entire AOSP

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 87/255

The Android Kernel

Anonymous Shared Memory
(ashmem)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 88/255

Shared memory mechanism in Linux

I Shared memory is one of the standard IPC mechanisms
present in most OSes

I Under Linux, they are usually provided by the POSIX SHM
mechanism, which is part of the System V IPCs

I ndk/docs/system/libc/SYSV-IPC.html illustrates all the
love Android developers have for these

I The bottom line is that they are flawed by design in Linux,
and lead to code leaking resources, be it maliciously or not

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 89/255

Ashmem

I Ashmem is the response to these flaws
I Notable differences are:

I Reference counting so that the kernel can reclaim resources
which are no longer in use

I There is also a mechanism in place to allow the kernel to
shrink shared memory regions when the system is under
memory pressure.

I The standard use of Ashmem in Android is that a process
opens a shared memory region and share the obtained file
descriptor through Binder.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 90/255

The Android Kernel

Alarm Timers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 91/255

The alarm driver

I Once again, the timer mechanisms available in Linux were not
sufficient for the power management policy that Android was
trying to set up

I High Resolution Timers can wake up a process, but don’t fire
when the system is suspended, while the Real Time Clock can
wake up the system if it is suspended, but cannot wake up a
particular process.

I Developed the alarm timers on top of the Real Time Clock
and High Resolution Timers already available in the kernel

I These timers will be fired even if the system is suspended,
waking up the device to do so

I Obviously, to let the application do its job, when the
application is woken up, a wakelock is grabbed

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 92/255

The Android Kernel

Network Security

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 93/255

Paranoid Network

I In the standard Linux kernel, every application can open
sockets and communicate over the Network

I However, Google was willing to apply a more strict policy with
regard to network access

I Access to the network is a permission, with a per application
granularity

I Filtered with the GID

I You need it to access IP, Bluetooth, raw sockets or RFCOMM

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 94/255

The Android Kernel

Low Memory Killer

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 95/255

Low Memory Killer

I When the system goes out of memory, Linux throws the OOM
Killer to cleanup memory greedy processes

I However, this behavior is not predictable at all, and can kill
very important components of a phone (Telephony stack,
Graphic subsystem, etc) instead of low priority processes
(Angry Birds)

I The main idea is to have another process killer, that kicks in
before the OOM Killer and takes into account the time since
the application was last used and the priority of the
component for the system

I It uses various thresholds, so that it first notifies applications
so that they can save their state, then begins to kill
non-critical background processes, and then the foreground
applications

I As it is run to free memory before the OOM Killer, the latter
will never be run, as the system will never run out of memory

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 96/255

The Android Kernel

Various Drivers and Fixes

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 97/255

Various additions

I Android also has a lot of minor features added to the Linux
kernel:

I RAM Console, a RAM-based console that survives a reboot to
hold kernel logs

I pmem, a physically contiguous memory allocator, written
specifically for the HTC G1, to allocate heaps used for 2D
hardware acceleration

I ADB
I YAFFS2
I Timed GPIOs

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 98/255

Android Filesystem

Android
Filesystem
Maxime Ripard
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 99/255

Android Filesystem

Principle and solutions

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 100/255

Filesystems

I Filesystems are used to organize data in directories and files
on storage devices or on the network. The directories and files
are organized as a hierarchy

I In Unix systems, applications and users see a single global
hierarchy of files and directories, which can be composed of
several filesystems.

I Filesystems are mounted in a specific location in this
hierarchy of directories

I When a filesystem is mounted in a directory (called mount
point), the contents of this directory reflects the contents of
the storage device

I When the filesystem is unmounted, the mount point is empty
again.

I This allows applications to access files and directories easily,
regardless of their exact storage location

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 101/255

Filesystems (2)

I Create a mount point, which is just a directory
$ mkdir /mnt/usbkey

I It is empty
$ ls /mnt/usbkey

$

I Mount a storage device in this mount point
$ mount -t vfat /dev/sda1 /mnt/usbkey

$

I You can access the contents of the USB key
$ ls /mnt/usbkey

docs prog.c picture.png movie.avi

$

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 102/255

mount / umount

I mount allows to mount filesystems
I mount -t type device mountpoint
I type is the type of filesystem
I device is the storage device, or network location to mount
I mountpoint is the directory where files of the storage device

or network location will be accessible
I mount with no arguments shows the currently mounted

filesystems

I umount allows to unmount filesystems
I This is needed before rebooting, or before unplugging a USB

key, because the Linux kernel caches writes in memory to
increase performances. umount makes sure that those writes
are committed to the storage.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 103/255

Root filesystem

I A particular filesystem is mounted at the root of the hierarchy,
identified by /

I This filesystem is called the root filesystem
I As mount and umount are programs, they are files inside a

filesystem.
I They are not accessible before mounting at least one

filesystem.

I As the root filesystem is the first mounted filesystem, it
cannot be mounted with the normal mount command

I It is mounted directly by the kernel, according to the root=

kernel option

I When no root filesystem is available, the kernel panics
Please append a correct "root=" boot option

Kernel panic - not syncing: VFS: Unable to mount root fs on unknown block(0,0)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 104/255

Location of the root filesystem

I It can be mounted from different locations
I From the partition of a hard disk
I From the partition of a USB key
I From the partition of an SD card
I From the partition of a NAND flash chip or similar type of

storage device
I From the network, using the NFS protocol
I From memory, using a pre-loaded filesystem (by the

bootloader)
I etc.

I It is up to the system designer to choose the configuration for
the system, and configure the kernel behavior with root=

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 105/255

Mounting rootfs from storage devices

I Partitions of a hard disk or USB key
I root=/dev/sdXY, where X is a letter indicating the device,

and Y a number indicating the partition
I /dev/sdb2 is the second partition of the second disk drive

(either USB key or ATA hard drive)

I Partitions of an SD card
I root=/dev/mmcblkXpY, where X is a number indicating the

device and Y a number indicating the partition
I /dev/mmcblk0p2 is the second partition of the first device

I Partitions of flash storage
I root=/dev/mtdblockX, where X is the partition number
I /dev/mtdblock3 is the fourth partition of a NAND flash chip

(if only one NAND flash chip is present)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 106/255

rootfs in memory: initramfs (1)

I It is also possible to have the root filesystem integrated into
the kernel image

I It is therefore loaded into memory together with the kernel
I This mechanism is called initramfs

I It integrates a compressed archive of the filesystem into the
kernel image

I It is useful for two cases
I Fast booting of very small root filesystems. As the filesystem is

completely loaded at boot time, application startup is very fast.
I As an intermediate step before switching to a real root

filesystem, located on devices for which drivers not part of the
kernel image are needed (storage drivers, filesystem drivers,
network drivers). This is always used on the kernel of
desktop/server distributions to keep the kernel image size
reasonable.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 107/255

rootfs in memory: initramfs (2)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 108/255

rootfs in memory: initramfs (3)

I The contents of an initramfs are defined at the kernel
configuration level, with the CONFIG_INITRAMFS_SOURCE
option

I Can be the path to a directory containing the root filesystem
contents

I Can be the path to a cpio archive
I Can be a text file describing the contents of the initramfs (see

documentation for details)

I The kernel build process will automatically take the contents
of the CONFIG_INITRAMFS_SOURCE option and integrate the
root filesystem into the kernel image

I filesystems/ramfs-rootfs-initramfs.txt and
early-userspace/README

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 109/255

Android Filesystem

Contents

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 110/255

Filesystem organization on GNU/Linux

I On most Linux based distributions, the filesystem layout is
defined by the Filesystem Hierarchy Standard

I The FHS defines the main directories and their contents

/bin Essential command binaries
/boot Bootloader files, i.e. kernel images and related

stuff
/etc Host-specific system-wide configuration files.

I Android follows an orthogonal path, storing its files in folders
not present in the FHS, or following it when it uses a defined
folder

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 111/255

Filesystem organization on Android

I Instead, the two main directories used by Android are

/system Immutable directory coming from the original
build. It contains native binaries and libraries,
framework jar files, configuration files, standard
apps, etc.

/data is where all the changing content of the system
are put: apps, data added by the user, data
generated by all the apps at runtime, etc.

I These two directories are usually mounted on separate
partitions, from the root filesystem originating from a kernel
RAM disk.

I Android also uses some usual suspects: /proc, /dev, /sys,
/etc, sbin, /mnt where they serve the same function they
usually do

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 112/255

/system

./app All the pre-installed apps

./bin Binaries installed on the system (toolbox, vold,
surfaceflinger)

./etc Configuration files

./fonts Fonts installed on the system

./framework Jar files for the framework

./lib Shared objects for the system libraries

./modules Kernel modules

./xbin External binaries

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 113/255

Other directories

I Like we said earlier, Android most of the time either uses
directories not in the FHS, or directories with the exact same
purpose as in standard Linux distributions (/dev, /proc),
therefore avoiding collisions. /sys)

I There is some collision though, for /etc and /sbin, which
are hopefully trimmed down

I This allows to have a full Linux distribution side by side with
Android with only minor tweaks

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 114/255

android filesystem config.h

I Located in system/core/include/private/

I Contains the full filesystem setup, and is written as a C
header

I UID/GID
I Permissions for system directories
I Permissions for system files

I Processed at compilation time to enforce the permissions
throughout the filesystem

I Useful in other parts of the framework as well, such as ADB

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 115/255

Android Filesystem

Virtual Filesystems

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 116/255

proc virtual filesystem

I The proc virtual filesystem exists since the beginning of Linux
I It allows

I The kernel to expose statistics about running processes in the
system

I The user to adjust at runtime various system parameters about
process management, memory management, etc.

I The proc filesystem is used by many standard userspace
applications, and they expect it to be mounted in /proc

I Applications such as ps or top would not work without the
proc filesystem

I Command to mount /proc:
mount -t proc nodev /proc

I filesystems/proc.txt in the kernel sources

I man proc

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 117/255

proc contents

I One directory for each running process in the system
I /proc/<pid>
I cat /proc/3840/cmdline
I It contains details about the files opened by the process, the

CPU and memory usage, etc.

I /proc/interrupts, /proc/devices, /proc/iomem,
/proc/ioports contain general device-related information

I /proc/cmdline contains the kernel command line
I /proc/sys contains many files that can be written to to

adjust kernel parameters
I They are called sysctl. See /latest/sysctl/ in kernel

sources.
I Example

echo 3 > /proc/sys/vm/drop_caches

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 118/255

sysfs filesystem

I The sysfs filesystem is a feature integrated in the 2.6 Linux
kernel

I It allows to represent in userspace the vision that the kernel
has of the buses, devices and drivers in the system

I It is useful for various userspace applications that need to list
and query the available hardware, for example udev or mdev

I All applications using sysfs expect it to be mounted in the
/sys directory

I Command to mount /sys:
mount -t sysfs nodev /sys

I $ ls /sys/

block bus class dev devices firmware

fs kernel modulepower

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 119/255

Android Filesystem

Minimal filesystem

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 120/255

Basic applications

I In order to work, a Linux system needs at least a few
applications

I An init application, which is the first userspace application
started by the kernel after mounting the root filesystem

I The kernel tries to run /sbin/init, /bin/init, /etc/init
and /bin/sh.

I If none of them are found, the kernel panics and the boot
process is stopped.

I The init application is responsible for starting all other
userspace applications and services

I Usually a shell, to allow a user to interact with the system

I Basic Unix applications, to copy files, move files, list files
(commands like mv, cp, mkdir, cat, etc.)

I Those basic components have to be integrated into the root
filesystem to make it usable

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 121/255

Overall booting process

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 122/255

Android Build System

Android Build
System
Maxime Ripard
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 123/255

Android Build System

Basics

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 124/255

Build Systems

I Build systems are designed to meet several goals:
I Integrate all the software components, both third-party and

in-house into a working image
I Be able to easily reproduce a given build

I Usually, they build software using the existing building system
shipped with each component

I Several solutions: Yocto, Buildroot, ptxdist.
I Google came up with its own solution for Android, that never

relies on other build systems, except for GNU/Make
I It allows to rely on very few tools, and to control every

software component in a consistent way.
I But it also means that when you have to import a new

component, you have to rewrite the whole Makefile to build it

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 125/255

First compilation

$ source build/envsetup.sh

$ lunch

You’re building on Linux

Lunch menu... pick a combo:

1. generic-eng

2. simulator

3. full_passion-userdebug

4. full_crespo-userdebug

Which would you like? [generic-eng]

$ make

$ make showcommands

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 126/255

Output

I All the output is generated in the out/ directory, outside of
the source code directory

I This directory contains mostly two subdirectories: host/ and
target/

I These directories contain all the objects files compiled during
the build process: .o files for C/C++ code, .jar files for
Java libraries, etc

I It is an interesting feature, since it keeps all the generated
stuff separate from the source code, and we can easily clean
without side effects

I It also generates the system images in the
out/target/product/<product_name>/ directory

I make clean only deletes that out directory

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 127/255

Android Build System

Add a New Module

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 128/255

Modules

I Every component in Android is called a module

I Modules are defined across the entire tree through the
Android.mk files

I The build system abstracts many details to make the creation
of a module’s Makefile as trivial as possible

I Of course, building a module that will be an Android
application and building a static library will not require the
same instructions, but these builds don’t differ that much
either.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 129/255

Hello World

LOCAL_PATH = $(call my-dir)

include $(CLEAR_VARS)

LOCAL_SRC_FILES = hello_world.c

LOCAL_MODULE = HelloWorld

LOCAL_MODULE_TAGS = optional

include $(BUILD_EXECUTABLE)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 130/255

Hello World

I Every module variable is prefixed by LOCAL_*

I LOCAL_PATH tells the build system where the current module
is

I include $(CLEAR_VARS) cleans the previously declared
LOCAL_* variables. This way, we make sure we won’t have
anything weird coming from other modules. The list of the
variables cleared is in build/core/clear_vars.mk

I LOCAL_SRC_FILES contains a list of all source files to be
compiled

I LOCAL_MODULE sets the module name

I LOCAL_MODULE_TAGS defines the set of modules this module
should belong to

I include $(BUILD_EXECUTABLE) tells the build system to
build this module as a binary

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 131/255

Tags

I Tags are used to define several sets of modules to be built
through the build variant selected by lunch

I We have 3 build variants:
I user

I Installs modules tagged with user
I Installs non-packaged modules that have no tags specified
I ADB is disabled by default

I userdebug is user plus
I Installs modules tagged with debug
I ADB is enabled by default

I eng is userdebug, plus
I Installs modules tagged as eng and development
I ro.kernel.android.checkjni = 1

I Finally, we have a fourth tag, optional, that will never be
directly integrated by a build variant, but deprecates user

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 132/255

Make and clean a module

I To build a module from the top directory, just do
make ModuleName

I However, building a simple module won’t regenerate a new
image. This is just useful to make sure that the module
builds. You will have to do a full make to have an image that
contains your module

I Actually, a full make will build your module at some point, but
you won’t find it in your generated image if it is tagged as
optional

I If you want to enable it for all builds, add its name to the
PRODUCT_PACKAGES variables in the
build/target/product/core.mk file.

I You can also get the list of the modules to be built with the
make modules target

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 133/255

Android Build System

Add a New Product

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 134/255

Defining new products

I Devices are well supported by the Android build system. It
allows to build multiple devices with the same source tree, to
have a per-device configuration, etc.

I All the product definitions should be put in
device/<company>/<device>

I The entry point is the AndroidProducts.mk file, which
should define the PRODUCT_MAKEFILES variable

I This variable defines where the actual product definitions are
located.

I It follows such an architecture because you can have several
products using the same device

I If you want your product to appear in the lunch menu, you
need to create a vendorsetup.sh file in the device

directory, with the right calls to add_lunch_combo

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 135/255

Product, devices and boards

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 136/255

Minimal Product Declaration

$(call inherit-product, build/target/product/generic.mk)

PRODUCT_NAME := full_MyDevice

PRODUCT_DEVICE := MyDevice

PRODUCT_MODEL := Full flavor of My Brand New Device

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 137/255

Copy files to the target

$(call inherit-product, build/target/product/generic.mk)

PRODUCT_COPY_FILES += \

device/mybrand/mydevice/vold.fstab:system/etc/vold.fstab

PRODUCT_NAME := full_MyDevice

PRODUCT_DEVICE := MyDevice

PRODUCT_MODEL := Full flavor of My Brand New Device

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 138/255

Add a package to the build for this product

$(call inherit-product, build/target/product/generic.mk)

PRODUCT_PACKAGES += FooBar

PRODUCT_COPY_FILES += \

device/mybrand/mydevice/vold.fstab:system/etc/vold.fstab

PRODUCT_NAME := full_mydevice

PRODUCT_DEVICE := mydevice

PRODUCT_MODEL := Full flavor of My Brand New Device

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 139/255

Overlays

I This is a mechanism used by products to override resources
already defined in the source tree, without modifying the
original code

I This is used for example to change the wallpaper for one
particular device

I Use the DEVICE_PACKAGE_OVERLAYS or
PRODUCT_PACKAGE_OVERLAYS variables that you set to a path
to a directory in your device folder

I This directory should contain a structure similar to the source
tree one, with only the files that you want to override

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 140/255

Add a package to the build for this product

$(call inherit-product, build/target/product/generic.mk)

PRODUCT_PACKAGES += FooBar

PRODUCT_COPY_FILES += \

device/mybrand/mydevice/vold.fstab:system/etc/vold.fstab

DEVICE_PACKAGE_OVERLAYS := device/mybrand/mydevice/overlay

PRODUCT_NAME := full_mydevice

PRODUCT_DEVICE := mydevice

PRODUCT_MODEL := Full flavor of My Brand New Device

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 141/255

Board Definition

I You will also need a BoardConfig.mk file along with the
product definition

I While the product definition was mostly about the build
system in itself, the board definition is more about the
hardware

I You can have a full working example in
device/samsung/crespo/BoardConfigCommon.mk

I However, this is poorly documented and sometimes
ambiguous so you will probably have to dig into the
build/core/Makefile at some point to see what a given
variable does

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 142/255

Minimal Board Definition

TARGET_NO_BOOTLOADER := true

TARGET_NO_KERNEL := true

TARGET_CPU_ABI := armeabi

HAVE_HTC_AUDIO_DRIVER := true

BOARD_USES_GENERIC_AUDIO := true

USE_CAMERA_STUB := true

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 143/255

Android Native Layer

Android Native
Layer
Maxime Ripard
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 144/255

Android Native Layer

Bionic

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 145/255

Bionic

I Google developed another C library for Android: Bionic.
They didn’t start from scratch however, they based their work
on the BSD standard C library.

I The most remarkable thing about Bionic is that it doesn’t
have full support for the POSIX API, so it might be a hurdle
when porting an already developed program to Android.

I However, Bionic has been created this way for a number of
reasons

I Keep the libc implementation as simple as possible, so that it
can be fast and lightweight (Bionic is a bit smaller than uClibc)

I Keep the (L)GPL code out of the userspace. Bionic is under
the BSD license

I And it implements some Android-specifics functions as well:
I Access to system properties
I Logging events in the system logs

I In the prebuilt/ directory, Google provides a prebuilt
toolchain that uses Bionic

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 146/255

Android Native Layer

Toolbox

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 147/255

Why Toolbox?

I A Linux system needs a basic set of programs to work
I An init program
I A shell
I Various basic utilities for file manipulation and system

configuration

I In normal Linux systems, those programs are provided by
different projects

I coreutils, bash, grep, sed, tar, wget, modutils, etc. are
all different projects

I Many different components to integrate
I Components not designed with embedded systems constraints

in mind: they are not very configurable and have a wide range
of features

I BusyBox is an alternative solution, extremely common on
embedded systems

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 148/255

General purpose toolbox: BusyBox

I Rewrite of many useful Unix command line utilities
I Integrated into a single project, which makes it easy to work

with
I Designed with embedded systems in mind: highly configurable,

no unnecessary features

I All the utilities are compiled into a single executable,
/bin/busybox

I Symbolic links to /bin/busybox are created for each
application integrated into BusyBox

I For a fairly featureful configuration, less than 500 KB
(statically compiled with uClibc) or less than 1 MB (statically
compiled with glibc).

I http://www.busybox.net/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 149/255

http://www.busybox.net/

BusyBox commands!

Commands available in BusyBox 1.13
[, [[, addgroup, adduser, adjtimex, ar, arp, arping, ash, awk, basename, bbconfig, bbsh,
brctl, bunzip2, busybox, bzcat, bzip2, cal, cat, catv, chat, chattr, chcon, chgrp, chmod,
chown, chpasswd, chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, cp, cpio, crond, crontab,
cryptpw, cttyhack, cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devfsd, df,
dhcprelay, diff, dirname, dmesg, dnsd, dos2unix, dpkg, dpkg_deb, du, dumpkmap, dumpleases,
e2fsck, echo, ed, egrep, eject, env, envdir, envuidgid, ether_wake, expand, expr, fakeidentd,
false, fbset, fbsplash, fdflush, fdformat, fdisk, fetchmail, fgrep, find, findfs, fold, free,
freeramdisk, fsck, fsck_minix, ftpget, ftpput, fuser, getenforce, getopt, getsebool, getty,
grep, gunzip, gzip, halt, hd, hdparm, head, hexdump, hostid, hostname, httpd, hush, hwclock,
id, ifconfig, ifdown, ifenslave, ifup, inetd, init, inotifyd, insmod, install, ip, ipaddr,
ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kbd_mode, kill, killall, killall5,
klogd, lash, last, length, less, linux32, linux64, linuxrc, ln, load_policy, loadfont,
loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr, ls, lsattr, lsmod, lzmacat,
makedevs, man, matchpathcon, md5sum, mdev, mesg, microcom, mkdir, mke2fs, mkfifo, mkfs_minix,
mknod, mkswap, mktemp, modprobe, more, mount, mountpoint, msh, mt, mv, nameif, nc, netstat,
nice, nmeter, nohup, nslookup, od, openvt, parse, passwd, patch, pgrep, pidof, ping, ping6,
pipe_progress, pivot_root, pkill, poweroff, printenv, printf, ps, pscan, pwd, raidautorun,
rdate, rdev, readahead, readlink, readprofile, realpath, reboot, renice, reset, resize,
restorecon, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run_parts, runcon, runlevel,
runsv, runsvdir, rx, script, sed, selinuxenabled, sendmail, seq, sestatus, setarch,
setconsole, setenforce, setfiles, setfont, setkeycodes, setlogcons, setsebool, setsid,
setuidgid, sh, sha1sum, showkey, slattach, sleep, softlimit, sort, split, start_stop_daemon,
stat, strings, stty, su, sulogin, sum, sv, svlogd, swapoff, swapon, switch_root, sync, sysctl,
syslogd, tac, tail, tar, taskset, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time, top,
touch, tr, traceroute, true, tty, ttysize, tune2fs, udhcpc, udhcpd, udpsvd, umount, uname,
uncompress, unexpand, uniq, unix2dos, unlzma, unzip, uptime, usleep, uudecode, uuencode,
vconfig, vi, vlock, watch, watchdog, wc, wget, which, who, whoami, xargs, yes, zcat, zcip

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 150/255

Toolbox

I As Busybox is under the GPL, Google developed an equivalent
tool, under the BSD license

I Much fewer UNIX commands implemented than Busybox, but
other commands to use the Android-specifics mechanism,
such as alarm, getprop or a modified log

Commands available in Toolbox in Gingerbread
alarm, cat, chmod, chown, cmp, date, dd, df, dmesg, exists, getevent, getprop, hd, id,
ifconfig, iftop, insmod, ioctl, ionice, kill, ln, log, ls, lsmod, lsof, mkdir, mount, mv,
nandread, netstat, newfs_msdos, notify, powerd, printenv, ps, r, readtty, reboot, renice, rm,
rmdir, rmmod, rotatefb, route, schedtop, sendevent, setconsole, setkey, setprop, sleep, smd,
start, stop, sync, syren, top, umount, uptime, vmstat, watchprops, wipe

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 151/255

Android Native Layer

Init

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 152/255

Init

I init is the name of the first userspace program

I It is up to the kernel to start it, with PID 1, and the program
should never exit during system life

I The kernel will look for init at /sbin/init, /bin/init,
/etc/init and /bin/sh. You can tweak that with the init=

kernel parameter

I The role of init is usually to start other applications at boot
time, a shell, mount the various filesystems, etc.

I Init also manages the shutdown of the system by undoing all
it has done at boot time

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 153/255

Android’s init

I Once again, Google has developed his own instead of relying
on an existing one.

I However, it has some interesting features, as it can also be
seen as a daemon on the system

I it manages device hotplugging, with basic permissions rules for
device files, and actions at device plugging and unplugging

I it monitors the services it started, so that if they crash, it can
restart them

I it monitors system properties so that you can take actions
when a particular one is modified

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 154/255

Init part

I For the initialization part, init mounts the various filesystems
(/proc, /sys, data, etc.)

I This allows to have an already setup environment before
taking further actions

I Once this is done, it reads the init.rc file and executes it

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 155/255

init.rc file interpretation

I Uses a unique syntax, based on events

I There usually are several init configuration files, init.rc
itself, and init.<platform_name>.rc

I While init.rc is always taken into account,
init.<platform_name>.rc is only interpreted if the
platform currently running the system reports the same name

I This name is either obtained by reading the file
/proc/cpuinfo or from the androidboot.hardware kernel
parameter

I Most of the customizations should therefore go to the
platform-specific configuration file rather than to the generic
one

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 156/255

Uevent

I Init also manages the runtime events generated by the kernel
when hardware is plugged in or removed, like udev does on a
standard Linux distribution

I This way, it dynamically creates the devices nodes under /dev

I You can also tweak its behavior to add specific permissions to
the files associated to a new event.

I The associated configuration files are /ueventd.rc and
/ueventd.<platform>.rc

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 157/255

Properties

I Init also manages the system properties

I Properties are a way used by Android to share values across
the system that are not changing quite often

I Quite similar to the Windows Registry
I These properties are split into several files:

I /system/build.prop which contains the properties generated
by the build system, such as the date of compilation

I /default.prop which contains the default values for certain
key properties, mostly related to the security and permissions
for ADB.

I /data/local.prop which contains various properties specific
to the device

I /data/property is a folder which purpose is to be able to
edit properties at run-time and still have them at the next
reboot. This folder is storing every properties prefixed by
persist. in separate files containing the values.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 158/255

Modifying Properties

I You can add or modify properties in the build system by using
either the PRODUCT_PROPERTY_OVERRIDES makefile variable,
or by defining your own system.prop file in the device
directory. Their content will be appended to
/system/build.prop at compilation time

I Modify the init.rc file so that at boot time it exports these
properties using the setprop command

I Using the API functions such as the Java function
SystemProperties.set

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 159/255

Permissions on the Properties

I Android, by default, only allows any given process to read the
properties.

I You can set write permissions on a particular property or a
group of them using the file
system/core/init/property_service.c

/* White list of permissions for setting property services. */

struct {

const char *prefix;

unsigned int uid;

unsigned int gid;

} property_perms[] = {

{ "net.rmnet0.", AID_RADIO, 0 },

{ "net.dns", AID_RADIO, 0 },

{ "net.", AID_SYSTEM, 0 },

{ "dhcp.", AID_SYSTEM, 0 },

{ "log.", AID_SHELL, 0 },

{ "service.adb.root", AID_SHELL, 0 },

{ "persist.security.", AID_SYSTEM, 0 },

{ NULL, 0, 0 }

};Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 160/255

Special Properties

I ro.* properties are read-only. They can be set only once in
the system life-time. You can only change their value by
modifying the property files and reboot.

I persist.* properties are stored on persistent storage each
time they are set.

I ctl.start and ctl.stop properties used instead of storing
properties to start or stop the service name passed as the new
value

I net.change property holds the name of the last net.*
property changed.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 161/255

Android Native Layer

Various daemons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 162/255

Vold

I The VOLume Daemon

I Just like init does, monitors new device events

I While init was only creating device files and taking some
configured options, vold actually only cares about storage
devices

I Its roles are to:
I Auto-mount the volumes
I Format the partitions on the device

I There is no /etc/fstab in Android, but
/system/etc/vold.fstab has a somewhat similar role

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 163/255

rild

I rild is the Radio Interface Layer Daemon

I This daemon drives the telephony stack, both voice and data
communication

I When using the voice mode, talks directly to the baseband,
but when issuing data transfers, relies on the kernel network
stack

I It can handle two types of commands:
I Solicited commands: commands that originate from the user:

dial a number, send an SMS, etc.
I Unsolicited commands: commands that come from the

baseband: receiving an SMS, a call, signal strength changed,
etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 164/255

Others

I netd
I netd manages the various network connections: Bluetooth,

Wifi, USB
I Also takes any associated actions: detect new connections, set

up the tethering, etc.
I It really is an equivalent to NetworkManager
I On a security perspective, it also allows to isolate

network-related privileges in a single process

I installd
I Handles package installation and removal
I Also checks package integrity, installs the native libraries on

the system, etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 165/255

Android Native Layer

SurfaceFlinger and PixelFlinger

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 166/255

Introduction to graphical stacks

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 167/255

Compositing window managers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 168/255

SurfaceFlinger

I This difference in design adds some interesting features:
I Effects are easy to implement, as it’s up to the window

manager to mangle the various surfaces at will to display them
on the screen. Thus, you can add transparency, 3d effects, etc.

I Improved stability. With a regular window manager, a message
is sent to every window to redraw its part of the screen, for
example when a window has been moved. But if an application
fails to redraw, the windows will become glitchy. This will not
happen with a compositing WM, as it will still display the
untouched surface.

I SurfaceFlinger is the compositing window manager in
Android, providing surfaces to applications and rendering all
of them with hardware acceleration.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 169/255

SurfaceFlinger and PixelFlinger

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 170/255

Android Native Layer

Stagefright

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 171/255

Stagefright

I StageFright is the multimedia playback engine in Android
since Eclair

I In its goals, it is quite similar to Gstreamer: Provide an
abstraction on top of codecs and libraries to easily play
multimedia files

I It uses a plugin system, to easily extend the number of
formats supported, either software or hardware decoded

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 172/255

StageFright Architecture

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 173/255

StageFright plugins

I To add support for a new format, you need to:
I Develop a new Extractor class, if the container is not

supported yet.
I Develop a new Decoder class, that implements the interface

needed by the StageFright core to read the data.
I Associate the mime-type of the files to read to your new

Decoder in the OMXCodec.cpp file, in the kDecoderInfo
array.

I → No runtime extension of the decoders, this is done at
compilation time.

static const CodecInfo kDecoderInfo[] = {

{ MEDIA_MIMETYPE_AUDIO_AAC, "OMX.TI.AAC.decode" },

{ MEDIA_MIMETYPE_AUDIO_AAC, "AACDecoder" },

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 174/255

Android Native Layer

Dalvik and Zygote

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 175/255

Dalvik

I Dalvik is the virtual machine, executing Android applications

I It is an interpreter written in C/C++, and is designed to be
portable, lightweight and run well on mobile devices

I It is also designed to allow several instances of it to be run at
the same time while consuming as little memory as possible

I Two execution modes
I portable: the interpreter is written in C, quite slow, but

should work on all platforms
I fast: Uses the mterp mechanism, to define routines either in

assembly or in C optimized for a specific platform. Instruction
dispatching is also done by computing the handler address
from the opcode number

I It uses the Apache Harmony Java framework for its core
libraries

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 176/255

Zygote

I Dalvik is started by Zygote

I frameworks/base/cmds/app_process

I At boot, Zygote is started by init, it then
I Initializes a virtual machine in its address space
I Loads all the basic Java classes in memory
I Starts the system server
I Waits for connections on a UNIX socket

I When a new application should be started:
I Android connects to Zygote through the socket to request the

start of a new application
I Zygote forks
I The child process loads the new application and start

executing it

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 177/255

Android Native Layer

Hardware Abstraction Layer

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 178/255

Hardware Abstraction Layers

I Usually, the kernel already provides a HAL for userspace
I However, from Google’s point of view, this HAL is not

sufficient and suffers some restrictions, mostly:
I Depending on the subsystem used in the kernel, the userspace

interface differs
I All the code in the kernel must be GPL-licensed

I Google implemented its HAL with dynamically loaded
userspace libraries

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 179/255

Library naming

I It follows the same naming scheme as for init: the generic
implementation is called libfoo.so and the hardware-specific
one libfoo.hardware.so

I The name of the hardware is looked up with the following
properties:

I ro.hardware
I ro.product.board
I ro.board.platform
I ro.arch

I The libraries are then searched for in the directories:
I /vendor/lib/hw
I /system/lib/hw

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 180/255

Various layers

I Audio (libaudio.so) configuration, mixing, noise
cancellation, etc.

I hardware/libhardware_legacy/include/hardware_

legacy/AudioHardwareInterface.h

I Graphics (gralloc.so, copybit.so, libhgl.so) handles
graphic memory buffer allocations, OpenGL implementation,
etc.

I libhgl.so should be provided by your vendor
I hardware/libhardware/include/gralloc.h
I hardware/libhardware/include/copybit.h

I Camera (libcamera.so) handles the camera functions:
autofocus, take a picture, etc.

I frameworks/base/include/camera/

CameraHardwareInterface.h

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 181/255

Various layers

I GPS (libgps.so) configuration, data acquisition
I hardware/libhardware/include/hardware/gps.h

I Lights (liblights.so) Backlight and LEDs management
I hardware/libhardware/include/lights.h

I Sensors (libsensors.so) handles the various sensors on the
device: Accelerometer, Proximity Sensor, etc.

I hardware/libhardware/include/sensors.h

I Radio Interface (libril-vendor-version.so) manages all
communication between the baseband and rild

I You can set the name of the library with the rild.lib and
rild.libargs properties to find the library

I hardware/ril/include/telephony/ril.h

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 182/255

Example: rild

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 183/255

Android Native Layer

JNI

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 184/255

What is JNI?

I A Java framework to call and be called by native applications
written in other languages

I Mostly used for:
I Writing Java bindings to C/C++ libraries
I Accessing platform-specific features
I Writing high-performance sections

I It is used extensively across the Android userspace to interface
between the Java Framework and the native daemons

I Since Gingerbread, you can develop apps in a purely native
way, possibly calling Java methods through JNI

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 185/255

C Code

#include "jni.h"

JNIEXPORT void JNICALL Java_com_example_Print_print(JNIEnv *env,

jobject obj,

jstring javaString)

{

const char *nativeString = (*env)->GetStringUTFChars(env,

javaString,

0);

printf("%s", nativeString);

(*env)->ReleaseStringUTFChars(env, javaString, nativeString);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 186/255

JNI arguments

I Function prototypes are following the template:
JNIEXPORT jstring JNICALL Java_ClassName_MethodName

(JNIEnv*, jobject)

I JNIEnv is a pointer to the JNI Environment that we will use
to interact with the virtual machine and manipulate Java
objects within the native methods

I jobject contains a pointer to the calling object. It is very
similar to this in C++

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 187/255

Java Code

package com.example;

class Print

{

private static native void print(String str);

public static void main(String[] args)

{

Print.print("HelloWorld!");

}

static

{

System.loadLibrary("print");

}

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 188/255

Android Framework and Applications

Android
Framework and
Applications
Maxime Ripard
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 189/255

Android Framework and Applications

Service Manager and Various Services

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 190/255

Whole Android Stack

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 191/255

System Server boot

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 192/255

The first step: system_server.c

I Located in frameworks/base/cmds/system_server

I Started by Zygote through the SystemServer
I Starts all the various native services:

I SurfaceFlinger
I SensorService
I AudioFlinger
I MediaPlayerService
I CameraService
I AudioPolicyService

I It then calls back the SystemServer object’s init2 function to
go on with the initialization

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 193/255

Java Services Initialization

I Located in frameworks/base/services/java/com/

android/server/SystemServer.java

I Starts all the different Java services in a different thread by
registering them into the Service Manager

I PowerManager, ActivityManager (also handles the
ContentProviders), PackageManager, BatteryService,
LightsService, VibratorService, AlarmManager,
WindowManager, BluetoothService,
DevicePolicyManager, StatusBarManager,
InputMethodManager, ConnectivityService,
MountService, NotificationManager, LocationManager,
AudioService, ...

I If you wish to add a new system service, you will need to add
it to one of these two parts to register it at boot time

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 194/255

Android Framework and Applications

Inter-Process Communication, Binder
and AIDLs

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 195/255

IPCs

I On modern systems, each process has its own address space,
allowing to isolate data

I This allows for better stability and security: only a given
process can access its address space. If another process tries
to access it, the kernel will detect it and kill this process.

I However, interactions between processes are sometimes
needed, that’s what IPCs are for.

I On classic Linux systems, several IPC mechanisms are used:
I Signals
I Semaphores
I Sockets
I Message queues
I Pipes
I Shared memory

I Android, however, uses mostly:
I Binder
I Ashmem and Sockets

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 196/255

Binder

I Uses shared memory for high performance

I Uses reference counting to garbage collect objects no longer in
use

I Data are sent through parcels, which is some kind of
serialization

I Used across the whole system, e.g., clients connect to the
window manager through Binder, which in turn connects to
SurfaceFlinger using Binder

I Each object has an identity, which does not change, even if
you pass it to other processes, that is used to distinct
components from a given process, or to enforce security

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 197/255

Binder Mechanism

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 198/255

Binder Implementation 1/2

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 199/255

Binder Implementation 2/2

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 200/255

Android Interface Definition Language (AIDL)

I Very similar to any other Interface Definition Language you
might have encountered

I Describes a programming interface for the client and the
server to communicate using IPCs

I Looks a lot like Java interfaces. Several types are already
defined, however, and you can’t extend this like what you can
do in Java:

I All Java primitive types (int, long, boolean, etc.)
I String
I CharSequence
I Parcelable
I List of one of the previous types
I Map

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 201/255

AIDLs HelloWorld

package com.example.android;

interface IRemoteService {

void HelloPrint(String aString);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 202/255

Intents

I Intents are a high-level use of Binder

I They describe the intention to do something
I They are used extensively across Android

I Activities, Services and BroadcastReceivers are started using
intents

I Two types of intents:

explicit The developer designates the target by its name
implicit There is no explicit target for the Intent. The

system will find the best target for the Intent by
itself, possibly asking the user what to do if
there are several matches

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 203/255

Android Framework and Applications

Various Java Services

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 204/255

Android Java Services

I There are lots of services implemented in Java in Android

I They abstract most of the native features to make them
available in a consistent way

I You get access to the system services using the
Context.getSystemService() call

I You can find all the accessible services in the documentation
for this function

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 205/255

ActivityManager

I Manages everything related to Android applications
I Starts Activities and Services through Zygote
I Manages their life cycle
I Fetches content exposed through content providers
I Dispatches the implicit intents
I Adjusts the Low Memory Killer priorities
I Handles non responding applications

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 206/255

PackageManager

I Exposes methods to query and manipulate already installed
packages, so you can:

I Get the list of packages
I Get/Set permissions for a given package
I Get various details about a given application (name, uids, etc)
I Get various resources from the package

I You can even install/uninstall an apk
I installPackage/uninstallPackage functions are hidden in

the source code, yet public.
I You can’t compile code that is calling directly these functions

and they are not documented anywhere except in the code
I But you can call them through the Java Reflection API, if

you have the proper permissions of course

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 207/255

PowerManager

I Abstracts the Wakelocks functionality
I Defines several states, but when a wakelock is grabbed, the

CPU will always be on
I PARTIAL_WAKE_LOCK

I Only the CPU is on, screen and keyboard backlight are off

I SCREEN_DIM_WAKE_LOCK
I Screen backlight is partly on, keyboard backlight is off

I SCREEN_BRIGHT_WAKE_LOCK
I Screen backlight is on, keyboard backlight is off

I FULL_WAKE_LOCK
I Screen and keyboard backlights are on

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 208/255

AlarmManager

I Abstracts the Android timers

I Allows to set a one time timer or a repetitive one

I When a timer expires, the AlarmManager grabs a wakelock,
sends an Intent to the corresponding application and releases
the wakelock once the Intent has been handled

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 209/255

ConnectivityManager and WifiManager

I ConnectivityManager
I Manages the various network connections

I Falls back to other connections when one fails
I Notifies the system when one becomes available/unavailable
I Allows the applications to retrieve various information about

connectivity

I WifiManager
I Provides an API to manage all aspects of WiFi networks

I List, modify or delete already configured networks
I Get information about the current WiFi network if any
I List currently available WiFi networks
I Sends Intents for every change in WiFi state

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 210/255

Example: Vibrator Service

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 211/255

Android Framework and Applications

Extend the framework

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 212/255

Why extend it?

I You might want to extend the existing Android framework to
add new features or allow other applications to use specific
devices available on your hardware

I As you have the code, you could just hack the source to make
the framework suit your needs

I This is quite problematic however:
I You might break the API, introduce bugs, etc
I Google requires you not to modify the Android public API
I It is painful to track changes across the tree, to port the

changes to new versions
I You don’t always want to have such extensions for all your

products

I As usual with Android, there’s a device-specific way of
extending the framework: PlatformLibraries

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 213/255

PlatformLibraries

I The modifications are just plain Java libraries

I You can declare any namespace you want, do whatever code
you want.

I However, they are bundled as raw Java archives, so you
cannot embed resources in the modifications

I If you would still do this, you can add them to
frameworks/base/res, but you have to hide them

I When using the Google Play Store, all the libraries including
these ones are submitted to Google, so that it can filter out
apps relying on libraries not available on your system

I To avoid any application to link to any jar file, you have to
declare both in your application and in your library that you
will use and add a custom library

I The library’s xml permission file should go into the
/system/etc/permissions folder

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 214/255

Android Debug Bridge

Developing and
Debugging with
ADB
Maxime Ripard
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 215/255

Android Debug Bridge

Introduction

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 216/255

ADB

I Usually on embedded devices, debugging and is done either
through a serial port on the device or JTAG for low-level
debugging

I This setup works well when developing a new product that
will have a static system. You develop and debug a system on
a product with serial and JTAG ports, and remove these ports
from the final product.

I For mobile devices, where you will have applications
developers that are not in-house, this is not enough.

I To address that issue, Google developed ADB, that runs on
top of USB, so that another developer can still have
debugging and low-level interaction with a production device.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 217/255

Implementation

I The code is split in 3 components:
I ADBd, the part that runs on the device
I ADB server, which is run on the host, acts as a proxy and

manages the connection to ADBd
I ADB clients, which are also run on the host, and are what is

used to send commands to the device

I ADBd can work either on top of TCP or USB.
I For USB, Google has implemented a driver using the USB

gadget and the USB composite frameworks as it implements
either the ADB protocol and the USB Mass Storage
mechanism.

I For TCP, ADBd just opens a socket

I ADB can also be used as a transport layer between the
development platform and the device, disregarding whether it
uses USB or TCP as underneath layer

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 218/255

ADB Architecture

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 219/255

Android Debug Bridge

Use of ADB

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 220/255

Useful Commands

push Copies a local file to the device

pull Copies a remote file from the device

install Installs the given Android package (apk) on the
device

uninstall Uninstalls the given package name from the device

lolcat Prints the device logs. You can filter either on the
source of the logs or their on their priority level

shell Runs a remote shell with a command line interface.
If an argument is given, runs it as a command and
prints out the result

reboot Reboots the device. bootloader and recovery

arguments are available to select the operation mode
you want to reboot to.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 221/255

ADB forward and gdb

adb forward tcp:5555 tcp:1234

See also gdbclient
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 222/255

ADB forward and jdb

adb forward tcp:5555 jdwp:4242

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 223/255

Various commands

I Wait for a device and install an application
I adb wait-for-device install foobar.apk

I Test an application by sending random user input
I adb shell monkey -v -p com.free-

electrons.foobar 500

I Filter system logs
I adb logcat ActivityManager:I FooBar:D *:S
I You can also set the ANDROID_LOG_TAGS environment variable

on your workstation

I Access other log buffers
I adb logcat -b radio

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 224/255

Android Application Development

Android
Application
Development
Maxime Ripard
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 225/255

Android Application Development

Basics

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 226/255

Android applications

I Android applications are written mostly in Java using Google’s
SDK

I Applications are bundled into an Android PacKage (.apk
files) which are archives containing the compiled code, data
and resources for the application, so applications are
completely self-contained

I You can install applications either through a market (Google
Play Store, Amazon Appstore, F-Droid, etc) or manually
(through ADB or a file manager)

I Of course, everything we have seen so far is mostly here to
provide a nice and unified environment to application
developers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 227/255

Applications Security

I Once installed, applications live in their own sandbox, isolated
from the rest of the system

I The system assigns a Linux user to every application, so that
every application has its own user/group

I It uses this UID and files permissions to allow the application
to access only its own files

I Each process has its own instance of Dalvik, so code is
running isolated from other applications

I By default, each application runs in its own process, which
will be started/killed during system life

I Android uses the principle of least privilege. Each application
by default has only access to what it requires to work.

I However, you can request extra permissions, make several
applications run in the same process, or with the same UID,
etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 228/255

Applications Components

I Components are the basic blocks of each application

I You can see them as entry points for the system in the
application

I There is four types of components:
I Activities
I Broadcast Receivers
I Content Providers
I Services

I Every application can start any component, even located in
other applications. This allows to share components easily,
and have very little duplication. However, for security reasons,
you start it through an Intent and not directly

I When an application requests a component, the system starts
the process for this application, instantiates the needed class
and runs that component. We can see that there is no single
point of entry in an application like main()

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 229/255

Application Manifest

I To declare the components present in your application, you
have to write a XML file, AndroidManifest.xml

I This file is used to:
I Declare available components
I Declare which permissions these components need
I Revision of the API needed
I Declare hardware features needed
I Libraries required by the components

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 230/255

NDK

I Google also provides a NDK to allow developers to write
native code

I While the code is not run by Dalvik, the security guarantees
are still there

I Allows to write faster code or to port existing C code to
Android more easily

I Since Gingerbread, you can even code a whole application
without writing a single line of Java

I It is still packaged in an apk, with a manifest, etc.

I However, there are some drawbacks, the main one being that
you can’t access the resources mechanism available from Java

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 231/255

Android Application Development

Activities

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 232/255

Activities

I Activities are a single screen of the user interface of an
application

I They are assembled to provide a consistent interface. If we
take the example of an email application, we will have:

I An activity listing the received mails
I An activity to compose a new mail
I An activity to read a mail

I Other applications might need one of these activities. To
continue with this example, the Camera application might
want to start the composing activity to share the just-shot
picture

I It is up to the application developer to advertise available
activities to the system

I When an activity starts a new activity, the latter replaces the
former on the screen and is pushed on the back stack which
holds the last used activities, so when the user is done with
the newer activity, it can easily go back to the previous one

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 233/255

Activity Lifecycle 1/3

I As there is no single entry point and as the system manages
the activities, activities have to define callbacks that the
system can call at some point in time

I Activities can be in one of the three states on Android

Running The activity is on the foreground and has focus
Paused The activity is still visible on the screen but no

longer has focus. It can be destroyed by the
system under very heavy memory pressure

Stopped The activity is no longer visible on the screen. It
can be killed at any time by the system

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 234/255

Activity Lifecycle 2/3

I There are callbacks for every change from one of these states
to another

I The most important ones are onCreate and onPause

I All components of an application run in the same thread. If
you do long operations in the callbacks, you will block the
entire application (UI included). You should always use
threads for every long-running task.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 235/255

Activity Lifecycle 3/3

Credits: http://developer.android.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 236/255

http://developer.android.com

Android Application Development

Services

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 237/255

Services

I Services are components running in the background

I They are used either to perform long running operations or to
work for remote processes

I A service has no user interface, as it is supposed to run when
the user does something else

I From another component, you can either work with a service
in a synchronous way, by binding to it, or asynchronous, by
starting it

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 238/255

Services Types

I We can see services as a set including:
I Started Services, that are created when other components call

startService. Such a service runs as long as needed,
whether the calling component is still alive or not, and can
stop itself or be stopped. When the service is stopped, it is
destroyed by the system

I Bound Services, that are bound to by other components by
calling bindService. They offer a client/server like interface,
interacting with each other. Multiple components can bind to
it, and a service is destroyed only when no more components
are bound to it

I Services can be of both types, given that callbacks for these
two do not overlap completely

I Services are started by passing Intents either to the
startService or bindService commands

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 239/255

Android Application Development

Content Providers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 240/255

Content Providers

I They provide access to organized data in a manner quite
similar to relational databases

I They allow to share data with both internal and external
components and centralize them

I Security is also enforced by permissions like usual, but they
also do not allow remote components to issue arbitrary
requests like what we can do with relational databases

I Instead, Content Providers rely on URIs to allow for a
restricted set of requests with optional parameters, only
permitting the user to filter by values and by columns

I You can use any storage back-end you want, while exposing a
quite neutral and consistent interface to other applications

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 241/255

Content URIs

I URIs are often built with the following pattern:
I content://<package>.provider/<path> to access

particular tables
I content://<package>.provider/<path>/<id> to access

single rows inside the given table

I Facilities are provided to deal with these
I On the application side:

I ContentUri to append and manage numerical IDs in URIs
I Uri.Builder and Uri classes to deal with URIs and strings

I On the provider side:
I UriMatcher associates a pattern to an ID, so that you can

easily match incoming URIs, and use switch over them.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 242/255

Android Application Development

Managing the Intents

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 243/255

Intents

I Intents are basically a bundle of several pieces of information,
mostly

I Component Name
I Contains both the full class name of the target component

plus the package name defined in the Manifest

I Action
I The action to perform or that has been performed

I Data
I The data to act upon, written as a URI, like

tel://0123456789

I Category
I Contains additional information about the nature of the

component that will handle the intent, for example the
launcher or a preference panel

I The component name is optional. If it is set, the intent will
be explicit. Otherwise, the intent will be implicit

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 244/255

Intent Resolution

I When using explicit intents, dispatching is quite easy, as the
target component is explicitly named. However, it is quite rare
that a developer knows the component name of external
applications, so it is mostly used for internal communication.

I Implicit intents are a bit more tricky to dispatch. The system
must find the best candidate for a given intent.

I To do so, components that want to receive intents have to
declare them in their manifests Intent filters, so that the
system knows what components it can respond to.

I Components without intent filters will never receive implicit
intents, only explicit ones

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 245/255

Intent Filters 1/2

I They are only about notifying the system about handled
implicit intents

I Filters are based on matching by category, action and data.
Filtering by only one of these three (by category for example)
is fine.

I A filter can list several actions. If an intent action field
corresponds to one of the actions listed here, the intent will
match

I It can also list several categories. However, if none of the
categories of an incoming intent are listed in the filter, then
intent won’t match.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 246/255

Broadcast Receivers

I Broadcast receivers are the fourth type of components that
can be integrated into an application. They are specifically
designed to deal with broadcast intents.

I Their overall design is quite easy to understand: there is only
one callback to implement: onReceive

I The life cycle is quite simple too: once the onReceive callback
has returned, the receiver is considered no longer active and
can be destroyed at any moment

I Thus you must not use asynchronous calls (Bind to a service
for example) from the onReceive callback, as there is no way
to be sure that the object calling the callback will still be alive
in the future.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 247/255

Android Application Development

Resources

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 248/255

Applications Resources

I Applications contain more than just compiled source code:
images, videos, sound, etc.

I In Android, anything related to the visual appearance of the
application is kept separate from the source code: activities
layout, animations, menus, strings, etc.

I Resources should be kept in the res/ directory of your
application.

I At compilation, the build tool will create a class R, containing
references to all the available resources, and associating an ID
to it

I This mechanism allows you to provide several alternatives to
resources, depending on locales, screen size, pixel density, etc.
in the same application, resolved at runtime.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 249/255

Resources Directory

I All resources are located in the res/ subdirectory
I anim/ contains animation definitions
I color/ contains the color definitions
I drawable/ contains images, ”9-patch” graphics, or XML-files

defining drawables (shapes, widgets, relying on a image file)
I layout/ contains XML defining applications layout
I menu/ contains XML files for the menu layouts
I raw/ contains files that are left untouched
I values/ contains strings, integers, arrays, dimensions, etc
I xml/ contains arbitrary XML files

I All these files are accessed by applications through their IDs.
If you still want to use a file path, you need to use the
assets/ folders

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 250/255

Resources

Credits: http://developer.android.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 251/255

http://developer.android.com

Alternative Resources

I Alternative resources are provided using extended sub-folder
names, that should be named using the pattern
<folder_name>-<qualifier>

I There is a number of qualifiers, depending on which case you
want to provide an alternative for. The most used ones are
probably:

I locales (en, fr, fr-rCA, ...)
I screen orientation (land, port)
I screen size (small, large,...)
I screen density (mdpi, ldpi, ...)
I and much others

I You can specify multiple qualifiers by chaining them,
separated by dashes. If you want layouts to be applied only
when on landscape on high density screens, you will save them
into the directory layout-land-hdpi

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 252/255

Resources Selection

Credits: http://developer.android.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 253/255

http://developer.android.com

Demo Time!

Demo Time!
Maxime Ripard
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 254/255

Hardware used in this demo

Using DevKit8000 boards from Embest

I OMAP3530 SoC from Texas
Instruments

I 256 MB RAM, 256 MB flash

I 4”3 TFT LCD touchscreen

I 1 USB 2.0 host, 1 USB device

I 100 Mbit Ethernet port

I DVI-D / HDMI display connector

I Expansion port, JTAG port, etc.

I Currently sold in Europe at 269
EUR (V.A.T. not included) by
NeoMore.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 255/255

	Introduction to Android
	Features
	History
	Architecture
	Hardware Requirements for Linux
	Embedded Systems using Linux
	Hardware Requirements for Android

	Android Source Code and Compilation
	How to get the source code
	Compilation
	Contribute

	Linux kernel introduction
	Changes introduced in the Android Kernel
	Wakelocks
	Binder
	klogger
	Anonymous Shared Memory (ashmem)
	Alarm Timers
	Network Security
	Low Memory Killer
	Various Drivers and Fixes

	Android Filesystem
	Principle and solutions
	Contents
	Virtual Filesystems
	Minimal filesystem

	Android Build System
	Basics
	Add a New Module
	Add a New Product

	Android Native Layer
	Bionic
	Toolbox
	Init
	Various daemons
	SurfaceFlinger and PixelFlinger
	Stagefright
	Dalvik and Zygote
	Hardware Abstraction Layer
	JNI

	Android Framework and Applications
	Service Manager and Various Services
	Inter-Process Communication, Binder and AIDLs
	Various Java Services
	Extend the framework

	Developing and Debugging with ADB
	Introduction
	Use of ADB

	Android Application Development
	Basics
	Activities
	Services
	Content Providers
	Managing the Intents
	Resources

	Demo Time!

