Calculates the hyperbolic cosine of a complex number
#include <complex.h>
double complex ccosh ( double complex z );
float complex ccoshf ( float complex z );
long double complex ccoshl ( long double complex z );
The hyperbolic cosine of a complex number z is equal to (exp(z) + exp(-z)) / 2. The ccosh functions return the hyperbolic cosine of their complex argument.
Example
double complex v, w, z = 1.2 - 3.4 * I;
v = ccosh( z );
w = 0.5 * ( cexp(z) + cexp(-z) );
printf( "The ccosh( ) function returns %.2f %+.2f*I.\n",
creal(v), cimag(v) );
printf( "Using the cexp( ) function, the result is %.2f %+.2f*I.\n",
creal(w), cimag(w) );
This code produces the following output:
The ccosh( ) function returns -1.75 +0.39*I.
Using the cexp( ) function, the result is -1.75 +0.39*I.
See Also
csinh( ), ctanh( ), cacosh( ), casinh( ), catanh( )
|