17.4 Playing Sounds with javax.sound
To achieve more detailed control over the playback of sounds,
including the ability to skip to any specified spot in the sound and
control things such as volume and balance, we must use the Java Sound
API, which is a much lower-level API than the
AudioClip interface. JavaSound consists of the
javax.sound.sampled package for sampled audio and
the javax.sound.midi package for MIDI-based audio. Example 17-3 demonstrates the basic capabilities of these
two packages. It loads a sound file (sampled audio or MIDI)
completely into memory and then displays a GUI that allows you to
play it. The GUI makes extensive use of the Swing
JSlider component, which allows you both to select
the playback position of the sound and to set things such as the
volume, balance, and tempo of the sound. The program displays
different controls for sampled audio files than it does for MIDI
files. Both GUIs are shown in Figure 17-1.
You'll notice that the code is substantially
different for sampled audio and MIDI files as well.
A shortcoming of the SoundPlayer class is that it
can only play sampled audio files that use PCM encoding. ALAW and
ULAW encoded files are not supported, nor
are more complex compressed encodings, such as MP3. The JavaSound API
attempts to directly mirror the capabilities of sound hardware, and
can therefore only play PCM sounds. It does provide a transcoding
technique, however, to convert sounds to PCM encoding.
We'll see this later in the chapter, in Example 17-4.
Example 17-3. SoundPlayer.java
package je3.sound;
import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.border.*;
import javax.sound.sampled.*;
import javax.sound.midi.*;
/**
* This class is a Swing component that can load and play a sound clip,
* displaying progress and controls. The main( ) method is a test program.
* This component can play sampled audio or MIDI files, but handles them
* differently. For sampled audio, time is reported in microseconds, tracked in
* milliseconds and displayed in seconds and tenths of seconds. For midi
* files time is reported, tracked, and displayed in MIDI "ticks".
* This program does no transcoding, so it can only play sound files that use
* the PCM encoding.
*/
public class SoundPlayer extends JComponent {
boolean midi; // Are we playing a midi file or a sampled one?
Sequence sequence; // The contents of a MIDI file
Sequencer sequencer; // We play MIDI Sequences with a Sequencer
Clip clip; // Contents of a sampled audio file
boolean playing = false; // whether the sound is currently playing
// Length and position of the sound are measured in milliseconds for
// sampled sounds and MIDI "ticks" for MIDI sounds
int audioLength; // Length of the sound.
int audioPosition = 0; // Current position within the sound
// The following fields are for the GUI
JButton play; // The Play/Stop button
JSlider progress; // Shows and sets current position in sound
JLabel time; // Displays audioPosition as a number
Timer timer; // Updates slider every 100 milliseconds
// The main method just creates a SoundPlayer in a Frame and displays it
public static void main(String[ ] args)
throws IOException,
UnsupportedAudioFileException,
LineUnavailableException,
MidiUnavailableException,
InvalidMidiDataException
{
SoundPlayer player;
File file = new File(args[0]); // This is the file we'll be playing
// Determine whether it is midi or sampled audio
boolean ismidi;
try {
// We discard the return value of this method; we just need to know
// whether it returns successfully or throws an exception
MidiSystem.getMidiFileFormat(file);
ismidi = true;
}
catch(InvalidMidiDataException e) {
ismidi = false;
}
// Create a SoundPlayer object to play the sound.
player = new SoundPlayer(file, ismidi);
// Put it in a window and play it
JFrame f = new JFrame("SoundPlayer");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.getContentPane( ).add(player, "Center");
f.pack( );
f.setVisible(true);
}
// Create a SoundPlayer component for the specified file.
public SoundPlayer(File f, boolean isMidi)
throws IOException,
UnsupportedAudioFileException,
LineUnavailableException,
MidiUnavailableException,
InvalidMidiDataException
{
if (isMidi) { // The file is a MIDI file
midi = true;
// First, get a Sequencer to play sequences of MIDI events
// That is, to send events to a Synthesizer at the right time.
sequencer = MidiSystem.getSequencer( ); // Used to play sequences
sequencer.open( ); // Turn it on.
// Get a Synthesizer for the Sequencer to send notes to
Synthesizer synth = MidiSystem.getSynthesizer( );
synth.open( ); // acquire whatever resources it needs
// The Sequencer obtained above may be connected to a Synthesizer
// by default, or it may not. Therefore, we explicitly connect it.
Transmitter transmitter = sequencer.getTransmitter( );
Receiver receiver = synth.getReceiver( );
transmitter.setReceiver(receiver);
// Read the sequence from the file and tell the sequencer about it
sequence = MidiSystem.getSequence(f);
sequencer.setSequence(sequence);
audioLength = (int)sequence.getTickLength( ); // Get sequence length
}
else { // The file is sampled audio
midi = false;
// Getting a Clip object for a file of sampled audio data is kind
// of cumbersome. The following lines do what we need.
AudioInputStream ain = AudioSystem.getAudioInputStream(f);
try {
DataLine.Info info =
new DataLine.Info(Clip.class,ain.getFormat( ));
clip = (Clip) AudioSystem.getLine(info);
clip.open(ain);
}
finally { // We're done with the input stream.
ain.close( );
}
// Get the clip length in microseconds and convert to milliseconds
audioLength = (int)(clip.getMicrosecondLength( )/1000);
}
// Now create the basic GUI
play = new JButton("Play"); // Play/stop button
progress = new JSlider(0, audioLength, 0); // Shows position in sound
time = new JLabel("0"); // Shows position as a #
// When clicked, start or stop playing the sound
play.addActionListener(new ActionListener( ) {
public void actionPerformed(ActionEvent e) {
if (playing) stop( ); else play( );
}
});
// Whenever the slider value changes, first update the time label.
// Next, if we're not already at the new position, skip to it.
progress.addChangeListener(new ChangeListener( ) {
public void stateChanged(ChangeEvent e) {
int value = progress.getValue( );
// Update the time label
if (midi) time.setText(value + "");
else time.setText(value/1000 + "." +
(value%1000)/100);
// If we're not already there, skip there.
if (value != audioPosition) skip(value);
}
});
// This timer calls the tick( ) method 10 times a second to keep
// our slider in sync with the music.
timer = new javax.swing.Timer(100, new ActionListener( ) {
public void actionPerformed(ActionEvent e) { tick( ); }
});
// put those controls in a row
Box row = Box.createHorizontalBox( );
row.add(play);
row.add(progress);
row.add(time);
// And add them to this component.
setLayout(new BoxLayout(this, BoxLayout.Y_AXIS));
this.add(row);
// Now add additional controls based on the type of the sound
if (midi) addMidiControls( );
else addSampledControls( );
}
/** Start playing the sound at the current position */
public void play( ) {
if (midi) sequencer.start( );
else clip.start( );
timer.start( );
play.setText("Stop");
playing = true;
}
/** Stop playing the sound, but retain the current position */
public void stop( ) {
timer.stop( );
if (midi) sequencer.stop( );
else clip.stop( );
play.setText("Play");
playing = false;
}
/** Stop playing the sound and reset the position to 0 */
public void reset( ) {
stop( );
if (midi) sequencer.setTickPosition(0);
else clip.setMicrosecondPosition(0);
audioPosition = 0;
progress.setValue(0);
}
/** Skip to the specified position */
public void skip(int position) { // Called when user drags the slider
if (position < 0 || position > audioLength) return;
audioPosition = position;
if (midi) sequencer.setTickPosition(position);
else clip.setMicrosecondPosition(position * 1000);
progress.setValue(position); // in case skip( ) is called from outside
}
/** Return the length of the sound in ms or ticks */
public int getLength( ) { return audioLength; }
// An internal method that updates the progress bar.
// The Timer object calls it 10 times a second.
// If the sound has finished, it resets to the beginning
void tick( ) {
if (midi && sequencer.isRunning( )) {
audioPosition = (int)sequencer.getTickPosition( );
progress.setValue(audioPosition);
}
else if (!midi && clip.isActive( )) {
audioPosition = (int)(clip.getMicrosecondPosition( )/1000);
progress.setValue(audioPosition);
}
else reset( );
}
// For sampled sounds, add sliders to control volume and balance
void addSampledControls( ) {
try {
FloatControl gainControl =
(FloatControl)clip.getControl(FloatControl.Type.MASTER_GAIN);
if (gainControl != null) this.add(createSlider(gainControl));
}
catch(IllegalArgumentException e) {
// If MASTER_GAIN volume control is unsupported, just skip it
}
try {
// FloatControl.Type.BALANCE is probably the correct control to
// use here, but it doesn't work for me, so I use PAN instead.
FloatControl panControl =
(FloatControl)clip.getControl(FloatControl.Type.PAN);
if (panControl != null) this.add(createSlider(panControl));
}
catch(IllegalArgumentException e) { }
}
// Return a JSlider component to manipulate the supplied FloatControl
// for sampled audio.
JSlider createSlider(final FloatControl c) {
if (c == null) return null;
final JSlider s = new JSlider(0, 1000);
final float min = c.getMinimum( );
final float max = c.getMaximum( );
final float width = max-min;
float fval = c.getValue( );
s.setValue((int) ((fval-min)/width * 1000));
java.util.Hashtable labels = new java.util.Hashtable(3);
labels.put(new Integer(0), new JLabel(c.getMinLabel( )));
labels.put(new Integer(500), new JLabel(c.getMidLabel( )));
labels.put(new Integer(1000), new JLabel(c.getMaxLabel( )));
s.setLabelTable(labels);
s.setPaintLabels(true);
s.setBorder(new TitledBorder(c.getType( ).toString( ) + " " +
c.getUnits( )));
s.addChangeListener(new ChangeListener( ) {
public void stateChanged(ChangeEvent e) {
int i = s.getValue( );
float f = min + (i*width/1000.0f);
c.setValue(f);
}
});
return s;
}
// For Midi files, create a JSlider to control the tempo,
// and create JCheckBoxes to mute or solo each MIDI track.
void addMidiControls( ) {
// Add a slider to control the tempo
final JSlider tempo = new JSlider(50, 200);
tempo.setValue((int)(sequencer.getTempoFactor( )*100));
tempo.setBorder(new TitledBorder("Tempo Adjustment (%)"));
java.util.Hashtable labels = new java.util.Hashtable( );
labels.put(new Integer(50), new JLabel("50%"));
labels.put(new Integer(100), new JLabel("100%"));
labels.put(new Integer(200), new JLabel("200%"));
tempo.setLabelTable(labels);
tempo.setPaintLabels(true);
// The event listener actually changes the tempo
tempo.addChangeListener(new ChangeListener( ) {
public void stateChanged(ChangeEvent e) {
sequencer.setTempoFactor(tempo.getValue( )/100.0f);
}
});
this.add(tempo);
// Create rows of solo and checkboxes for each track
Track[ ] tracks = sequence.getTracks( );
for(int i = 0; i < tracks.length; i++) {
final int tracknum = i;
// Two checkboxes per track
final JCheckBox solo = new JCheckBox("solo");
final JCheckBox mute = new JCheckBox("mute");
// The listeners solo or mute the track
solo.addActionListener(new ActionListener( ) {
public void actionPerformed(ActionEvent e) {
sequencer.setTrackSolo(tracknum,solo.isSelected( ));
}
});
mute.addActionListener(new ActionListener( ) {
public void actionPerformed(ActionEvent e) {
sequencer.setTrackMute(tracknum,mute.isSelected( ));
}
});
// Build up a row
Box box = Box.createHorizontalBox( );
box.add(new JLabel("Track " + tracknum));
box.add(Box.createHorizontalStrut(10));
box.add(solo);
box.add(Box.createHorizontalStrut(10));
box.add(mute);
box.add(Box.createHorizontalGlue( ));
// And add it to this component
this.add(box);
}
}
}
 |