Optimization for AdministratorsThe previous sections describe optimizations that can be performed by unprivileged MySQL users. Administrators who have control of the MySQL server or the machine on which it runs can perform additional optimizations. For example, some server parameters pertain to query processing and may be tuned, and certain hardware configuration factors have a direct effect on query processing speed. In many cases, these optimizations improve the performance of the server as a whole, and thus have a beneficial effect for all MySQL users. In general, you should keep the following principles in mind when performing administrative optimizations:
Specific ways you can apply these principles are discussed next. Increase the size of the server's caches. The server has many parameters (system variables) that you can change to affect its operation. Several of these directly affect the speed of query processing. The most important parameters you can change are the sizes of the table cache and the caches used by the storage engines to buffer information for indexing operations. If you have memory available, allocating it to the server's caches allows information to be held in memory longer and reduces disk activity. This is good, because it's much faster to access information from memory than to read it from disk.
Instructions for setting system variables may be found in Chapter 11, "General MySQL Administration." When you change parameter values, follow these guidelines:
Other strategies you can adopt to help the server operate more efficiently include the following: Disable storage engines that you don't need. The server won't allocate any memory for disabled engines, allowing you to devote it to other uses. Most storage engines can be excluded from the server binary at configuration time if you build MySQL from source. For those engines that are included in the server, many can be disabled at runtime with the appropriate startup options. See "Selecting Storage Engines," in Chapter 11, "General MySQL Administration" for details. Keep grant table permissions simple. Although the server caches grant table contents in memory, if you have any rows in the tables_priv or columns_priv tables, the server must check table- and column-level privileges for every query. If those tables are empty, the server can optimize its privilege checking to skip those levels. If you build MySQL from source, configure it to use static libraries rather than shared libraries. Dynamic binaries that use shared libraries save on disk space, but static binaries are faster. However, some systems require dynamic linking if you use the user-defined function (UDF) mechanism. On such systems, static binaries will not work. Using MyISAM Key CachesWhen MySQL executes a statement that uses indexes from MyISAM tables, it uses a key cache to hold index values. The cache allows disk I/O to be reduced: If key values needed from a table are found in the cache, they need not be read from disk again. Unfortunately, the key cache is a finite resource and it is shared among all MyISAM tables by default. If key values are not found in the cache and the cache is full, contention results: Some values currently in the cache must be discarded to make room for new values. The next time the discarded values are needed, they must be read from disk again. If you have an especially heavily used MyISAM table, it would be nice to ensure that its keys remain in memory, but contention in the cache works against this. Contention can arise either when keys need to be read from the same table, or from other tables. You might avoid same-table contention by making the key cache large enough to hold all of a given table's indexes completely, but keys from other tables still could contend for space in the cache. MySQL 4.1 and up offers a solution to this problem because it supports setting up multiple key caches and allows a table's indexes to be assigned to and preloaded into a given cache. This can be useful if you have a table that sees especially heavy use and you have sufficient memory to load its indexes into the cache. This capability enables you to avoid both same-table and other-table contention: Create a cache that is large enough to hold a table's indexes completely and devote the cache exclusively to the use of that table. No disk I/O is necessary after the keys have been loaded into the cache. Also, key values will never need to be discarded from the cache and key lookups for the table can be done in memory. The following example shows how to set up a key cache for the member table in the sampdb database, using a cache with a name of member_cache and a size of 1MB. You must have the SUPER privilege to carry out these instructions.
If you want to load other tables into the same cache or create other key caches for other tables, that can be done as well. For more information about key caches, consult Chapter 11. Using the Query CacheThe MySQL server can use a query cache to speed up processing of SELECT statements that are executed repeatedly. The resulting performance improvement often is dramatic. The query cache works as follows:
Support for the query cache is built in by default. If you don't want to use the cache, and want to avoid incurring even the minimal overhead that it involves, you can build the server without it by running the configure script with the --without-query-cache option. To determine whether a server supports the query cache, check the value of the have_query_cache system variable:
mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+
For servers that do include query cache support, cache operation is based on the values of three system variables:
For example, to enable the query cache and allocate 16MB of memory for it, use the following settings in an option file: [mysqld] query_cache_type=1 query_cache_size=16M The amount of memory indicated by query_cache_size is allocated even if query_cache_type is zero. To avoid wasting memory, don't set the size greater than zero unless you plan to enable the cache. Also, a size of zero effectively disables the cache even if query_cache_type is non-zero. Individual clients begin with query caching behavior in the state indicated by the server's default caching mode. A client can change the default caching mode for its queries by using this statement:
SET query_cache_type = val;
val can be 0, 1, or 2, which have the same meanings as when setting the query_cache_type variable at server startup. In a SET statement, the symbolic values OFF, ON, and DEMAND are synonyms for 0, 1, and 2. A client also can control caching of individual queries by adding a modifier following the SELECT keyword. SELECT SQL_CACHE causes the query result to be cached if the cache mode is ON or DEMAND. SELECT SQL_NO_CACHE causes the result not to be cached. Suppression of caching can be useful for queries that retrieve information from a constantly changing table. In that case, the cache is unlikely to be of much use. Suppose that you're logging Web server requests to a table in MySQL, and also that you periodically run a set of summary queries on the table. For a reasonably busy Web server, new rows will be inserted into the table frequently and thus any query results cached for the table become invalidated quickly. The implication is that although you might issue the summary queries repeatedly, it's unlikely that the query cache will be of any value for them. Under such circumstances, it makes sense to issue the queries using the SQL_NO_CACHE modifier to tell the server not to bother caching their results. Hardware IssuesThe earlier part of this chapter discusses techniques that help improve your server's performance regardless of your hardware configuration. You can of course get better hardware to make your server run faster. But not all hardware-related changes are equally valuable. When assessing what kinds of hardware improvements you might make, the most important principles are the same as those that apply to server parameter tuning: Put as much information in fast storage as possible, and keep it there as long as possible. Several aspects of your hardware configuration can be modified to improve server performance: Install more memory into your machine. This enables you to configure larger values for the server's cache and buffer sizes, which allows it to keep data in memory longer and with less need to fetch information from disk. Reconfigure your system to remove all disk swap devices if you have enough RAM to do all swapping into a memory filesystem. Otherwise, some systems will continue to swap to disk even if you have sufficient RAM for swapping. Add faster disks to improve I/O latency. Seek time is typically the primary determinant of performance here. It's slow to move the heads laterally; after the heads have been positioned, reading blocks off the track is fast by comparison. However, if you have a choice between adding more memory and getting faster disks, add more memory. Memory is always faster than your disks, and adding memory allows you to use larger caches, which reduces disk activity. Take advantage of parallelism by redistributing disk activity across physical devices. If you can split reading or writing across multiple physical devices, it will be quicker than reading and writing everything from the same device. For example, if you store databases on one device and logs on another, writing to both devices at once it will be faster than if databases and logs share the same device. Note that using different partitions on the same physical device doesn't count as parallelism. That won't help because they'll still contend for the same physical resource (disk heads). The procedure for moving logs and databases is described in Chapter 10, "The MySQL Data Directory." Before you relocate data to a different device, make sure that you understand your system's load characteristics. If there's some other major activity already taking place on a particular physical device, putting a database there may actually make performance worse. For example, you may not realize any overall benefit if you process a lot of Web traffic and move a database onto the device where your Web server document tree is located. Use of RAID devices can give you some advantages of parallelism as well. Use multi-processor hardware. For a multi-threaded application like the MySQL server, multi-processor hardware can execute multiple threads at the same time. |